

Brisbane Office Job Number: DL18/196 Ref No: 13862 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 226 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 226 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 226 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
226	265	25 th July 2018	97.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					

Fill constructed on Lot 225 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 225 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 72 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899 www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 72 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1
Sample Number :	250022	250022	250024	250025
Test Number :	250052	250055	250054	230033
Sampling Method :	-	-	-	
Date Sampled :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Date Tested :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number '	293	-	291	-
Sample Location :	Lot 202	E 46E014	L of 201	E 46E997
Sample Location :	Lot 293 E 465921	E 465914 N 6946674	Lot 291 E 465899	E 465887 N 6946691
	N 6946679	RL 42.148	N 6946689	RL 42.119
	RL 42.130		RL 42.091	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	19.5	26.6	22.9	24.7
Hilf MDR Number :	250032	250033	250034	250035
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	108.5	99.5	99.5	100.5
Field Wet Density (t/m ³) :	1.898	1.907	1.910	1.918
Optimum Moisture Content (%) :	18.0	26.8	23.0	24.6
Moisture Variation :	-1.6	0.1	0.1	-0.1
Peak Converted Wet Density (t/m ³) :	1.933	1.949	1.986	1.975
Hilf Density Ratio (%) :	98.0	98.0	96.0	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

MOovel

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13863 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 227 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 227 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 227 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
227	264	25 th July 2018	96.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 227 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 227 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 72 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899 www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 72 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1
Sample Number :	250022	250022	250024	250025
Test Number :	250052	250055	250054	230033
Sampling Method :	-	-	-	
Date Sampled :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Date Tested :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number '	293	-	291	-
Sample Location :	Lot 202	E 46E014	L of 201	E 46E997
Sample Location :	Lot 293 E 465921	E 465914 N 6946674	Lot 291 E 465899	E 465887 N 6946691
	N 6946679	RL 42.148	N 6946689	RL 42.119
	RL 42.130		RL 42.091	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	19.5	26.6	22.9	24.7
Hilf MDR Number :	250032	250033	250034	250035
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	108.5	99.5	99.5	100.5
Field Wet Density (t/m ³) :	1.898	1.907	1.910	1.918
Optimum Moisture Content (%) :	18.0	26.8	23.0	24.6
Moisture Variation :	-1.6	0.1	0.1	-0.1
Peak Converted Wet Density (t/m ³) :	1.933	1.949	1.986	1.975
Hilf Density Ratio (%) :	98.0	98.0	96.0	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

MOovel

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13864 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 228 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 228 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 228 are presented in Table 1 below.

Table 1: Summary of Testing

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
228	263	25 th July 2018	98.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					

Fill constructed on Lot 228 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 228 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 72 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899 www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 72 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1
Sample Number :	250022	250022	250024	250025
Test Number :	250052	250055	250054	230033
Sampling Method :	-	-	-	
Date Sampled :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Date Tested :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number '	293	-	291	-
Sample Location :	Lot 202	E 46E014	L of 201	E 46E997
Sample Location :	Lot 293 E 465921	E 465914 N 6946674	Lot 291 E 465899	E 465887 N 6946691
	N 6946679	RL 42.148	N 6946689	RL 42.119
	RL 42.130		RL 42.091	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	19.5	26.6	22.9	24.7
Hilf MDR Number :	250032	250033	250034	250035
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	108.5	99.5	99.5	100.5
Field Wet Density (t/m ³) :	1.898	1.907	1.910	1.918
Optimum Moisture Content (%) :	18.0	26.8	23.0	24.6
Moisture Variation :	-1.6	0.1	0.1	-0.1
Peak Converted Wet Density (t/m ³) :	1.933	1.949	1.986	1.975
Hilf Density Ratio (%) :	98.0	98.0	96.0	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

MOovel

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13865 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 229 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 229 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 229 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
229	262	25 th July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 229 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 229 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 72 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899 www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 72 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1
Sample Number :	250022	250022	250024	250025
Test Number :	250052	250055	250054	230033
Sampling Method :	-	-	-	
Date Sampled :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Date Tested :	25/07/2018	25/07/2018	25/07/2018	25/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number '	293	-	291	-
Sample Location :	Lot 202	E 46E014	L of 201	E 46E997
Sample Location :	Lot 293 E 465921	E 465914 N 6946674	Lot 291 E 465899	E 465887 N 6946691
	N 6946679	RL 42.148	N 6946689	RL 42.119
	RL 42.130		RL 42.091	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	19.5	26.6	22.9	24.7
Hilf MDR Number :	250032	250033	250034	250035
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	108.5	99.5	99.5	100.5
Field Wet Density (t/m ³) :	1.898	1.907	1.910	1.918
Optimum Moisture Content (%) :	18.0	26.8	23.0	24.6
Moisture Variation :	-1.6	0.1	0.1	-0.1
Peak Converted Wet Density (t/m ³) :	1.933	1.949	1.986	1.975
Hilf Density Ratio (%) :	98.0	98.0	96.0	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

MOovel

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13889 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 253 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 253 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 253 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
253	210	20 th July 2018	99.5			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 253 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 253 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 59 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 59 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	1 07 1
Sample Number :	249705	249706	249707	249708
Test Number :	210	211	212	213
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	255	-	256	-
Sample Location :	Lot 255	E 465887	Lot 256	E 465896
	E 465892	N 6946507	E 465897	N 6946495
	N 6946516	RL 41.483	N 6946500	RL 41.480
	RL 41.460		RL 41.5	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	23.7	23.1	23.4	21.4
Hilf MDR Number :	249705	249706	249707	249708
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.4	AS1289.2.1.1
Moisture Ratio (%) :	97.5	101	100.5	101
Field Wet Density (t/m ³) :	1.914	1.935	1.927	1.937
Optimum Moisture Content (%) :	24.3	22.9	23.2	21.2
Moisture Variation :	0.6	-0.2	-0.1	-0.2
Peak Converted Wet Density (t/m ³) :	1.919	1.990	1.969	2.013
Hilf Density Ratio (%) :	99.5	97.0	98.0	96.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

Brisbane Office Job Number: DL18/196 Ref No: 13890 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 254 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 254 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 254 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
254	212	20 th July 2018	98.0		
254	213	20 th July 2018	96.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 254 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 254 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 59 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report							
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 59 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1			
Location:	WATERLEA ESTATE, STAGE 3 , WALLOON		Page 1 of 1				
Sample Number :	249705	249706	249707	249708			
Test Number :	210	211	212	213			
Sampling Method :	-	-	-	-			
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018			
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018			
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill			
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)			
Lot Number :	255	-	256	-			
Sample Location :	Lot 255	E 465887	Lot 256	E 465896			
	E 465892	N 6946507	E 465897	N 6946495			
	N 6946516	RL 41.483	N 6946500	RL 41.480			
	RL 41.460		RL 41.5				
Test Depth (mm) :	150	150	150	150			
Layer Depth (mm) :	150	150	150	150			
Maximum Size (mm) :	19	19	19	19			
Oversize Wet (%) :	-	-	-	-			
Oversize Dry (%) :	-	-	-	-			
Oversize Density (t/m ³) :	-	-	-	-			
Field Moisture Content (%) :	23.7	23.1	23.4	21.4			
Hilf MDR Number :	249705	249706	249707	249708			
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1			
Compactive Effort :	Standard	Standard	Standard	Standard			
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1			
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.4	AS1289.2.1.1			
Moisture Ratio (%) :	97.5	101	100.5	101			
Field Wet Density (t/m ³) :	1.914	1.935	1.927	1.937			
Optimum Moisture Content (%) :	24.3	22.9	23.2	21.2			
Moisture Variation :	0.6	-0.2	-0.1	-0.2			
Peak Converted Wet Density (t/m ³) :	1.919	1.990	1.969	2.013			
Hilf Density Ratio (%) :	99.5	97.0	98.0	96.0			
Minimum Specification :	95	95	95	95			
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%			
Site Selection :	-	-	-	-			
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay			
Remarks :	MDR performed by Gold Coast Laboratory. Corporate Site No. 1900.						

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13891 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 255 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 255 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 255 are representative of the fill constructed on Lot 255. The closest tests to Lot 255 were performed on Lot 254. A summary of tests representative of the fill constructed on Lot 255 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
254	212	20 th July 2018	98.0			
254	213	20 th July 2018	96.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of						

Table 1: Summary of Testing

Bulk Earthworks.

Fill constructed on Lot 255 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 255 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

10 DOCK L. McDOWALL

E. MCDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 59 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report							
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 59 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1			
Location:	WATERLEA ESTATE, STAGE 3 , WALLOON		Page 1 of 1				
Sample Number :	249705	249706	249707	249708			
Test Number :	210	211	212	213			
Sampling Method :	-	-	-	-			
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018			
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018			
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill			
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)			
Lot Number :	255	-	256	-			
Sample Location :	Lot 255	E 465887	Lot 256	E 465896			
	E 465892	N 6946507	E 465897	N 6946495			
	N 6946516	RL 41.483	N 6946500	RL 41.480			
	RL 41.460		RL 41.5				
Test Depth (mm) :	150	150	150	150			
Layer Depth (mm) :	150	150	150	150			
Maximum Size (mm) :	19	19	19	19			
Oversize Wet (%) :	-	-	-	-			
Oversize Dry (%) :	-	-	-	-			
Oversize Density (t/m ³) :	-	-	-	-			
Field Moisture Content (%) :	23.7	23.1	23.4	21.4			
Hilf MDR Number :	249705	249706	249707	249708			
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1			
Compactive Effort :	Standard	Standard	Standard	Standard			
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1			
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.4	AS1289.2.1.1			
Moisture Ratio (%) :	97.5	101	100.5	101			
Field Wet Density (t/m ³) :	1.914	1.935	1.927	1.937			
Optimum Moisture Content (%) :	24.3	22.9	23.2	21.2			
Moisture Variation :	0.6	-0.2	-0.1	-0.2			
Peak Converted Wet Density (t/m ³) :	1.919	1.990	1.969	2.013			
Hilf Density Ratio (%) :	99.5	97.0	98.0	96.0			
Minimum Specification :	95	95	95	95			
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%			
Site Selection :	-	-	-	-			
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay			
Remarks :	MDR performed by Gold Coast Laboratory. Corporate Site No. 1900.						

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13892 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 256 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 256 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 256 are representative of the fill constructed on Lot 256. The closest tests to Lot 256 were performed on Lot 254. A summary of tests representative of the fill constructed on Lot 256 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
254	212	20 th July 2018	98.0	
254	213	20 th July 2018	96.0	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of				

Table 1: Summary of Testing

 Bulk Earthworks.

 Fill constructed on Lot 256 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 256 can be termed as "Controlled Fill" in accordance with AS 2870-2011

"Residential Slabs and Footings". This statement does not include any top soil, which may have been placed for use as Lot dressing or

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

10 DOCK L. McDOWALL

E. MCDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

any other subsequent earthworks after 18th September 2018

Encl: Laboratory Test Reports DL18/196 – 59 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196	LEA, QLD, 4106	Report Number: Report Date : Order Number : Test Method :	DL18/196 - 59 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	1 07 1
Sample Number :	249705	249706	249707	249708
Test Number :	210	211	212	213
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	255	-	256	-
Sample Location :	Lot 255	E 465887	Lot 256	E 465896
	E 465892	N 6946507	E 465897	N 6946495
	N 6946516	RL 41.483	N 6946500	RL 41.480
	RL 41.460		RL 41.5	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	23.7	23.1	23.4	21.4
Hilf MDR Number :	249705	249706	249707	249708
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.4	AS1289.2.1.1
Moisture Ratio (%) :	97.5	101	100.5	101
Field Wet Density (t/m ³) :	1.914	1.935	1.927	1.937
Optimum Moisture Content (%) :	24.3	22.9	23.2	21.2
Moisture Variation :	0.6	-0.2	-0.1	-0.2
Peak Converted Wet Density (t/m ³) :	1.919	1.990	1.969	2.013
Hilf Density Ratio (%) :	99.5	97.0	98.0	96.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13893 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 257 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 257 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 257 are representative of the fill constructed on Lot 257. The closest tests to Lot 257 were performed on Lot 258. A summary of tests representative of the fill constructed on Lot 257 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
258	222	23 rd July 2018	96.5	
258	223	23 rd July 2018	95.5	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				

Table 1: Summary of Testing

Fill constructed on Lot 257 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 257 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 62 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	ensity Ratio	Report	- Frank
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKL EARTHWORKS SUPERVISION DL18/196	.EA, QLD, 4106	Report Number: Report Date : Order Number : Test Method :	DL18/196 - 62 10/08/2018 P040420 AS1289.5.8.1 & 5.7.1
	WATERLEA ESTATE, STAGE 3	, WALLOON	Fage	
Sample Number :	249789	249790	249791	249792
Test Number :	222	223	224	225
Sampling Method :	-	-	-	-
Date Sampled :	23/07/2018	23/07/2018	23/07/2018	23/07/2018
Date Tested :	23/07/2018	23/07/2018	23/07/2018	23/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	258	-	259	-
Sample Location :	Lot 258	E 465925	Lot 259	E 465941
	E 465928	N 6946475	E 465932	N 6946515
	N 6946480	RL 41.281	N 6946514	RL 41.588
	RL 41.268		RL 41.600	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	24.4	24.0	21.3	21.8
Hilf MDR Number :	249789	249790	249791	249792
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	103.5	99.5	94	99.5
Field Wet Density (t/m ³) :	1.872	1.887	1.867	1.864
Optimum Moisture Content (%) :	23.6	24.1	22.7	21.9
Moisture Variation :	-0.7	0.1	1.4	0.1
Peak Converted Wet Density (t/m ³) :	1.941	1.972	1.925	1.951
Hilf Density Ratio (%) :	96.5	95.5	97.0	95.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-		1	1

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A MOovel

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13894 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 258 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 258 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 258 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
258	222	23 rd July 2018	96.5	
258	223	23 rd July 2018	95.5	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				

Table 1: Summary of Testing

Fill constructed on Lot 258 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 258 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 62 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	ensity Ratio	Report	- Frank
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKL EARTHWORKS SUPERVISION DL18/196	.EA, QLD, 4106	Report Number: Report Date : Order Number : Test Method :	DL18/196 - 62 10/08/2018 P040420 AS1289.5.8.1 & 5.7.1
	WATERLEA ESTATE, STAGE 3	, WALLOON	Fage	
Sample Number :	249789	249790	249791	249792
Test Number :	222	223	224	225
Sampling Method :	-	-	-	-
Date Sampled :	23/07/2018	23/07/2018	23/07/2018	23/07/2018
Date Tested :	23/07/2018	23/07/2018	23/07/2018	23/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	258	-	259	-
Sample Location :	Lot 258	E 465925	Lot 259	E 465941
	E 465928	N 6946475	E 465932	N 6946515
	N 6946480	RL 41.281	N 6946514	RL 41.588
	RL 41.268		RL 41.600	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	24.4	24.0	21.3	21.8
Hilf MDR Number :	249789	249790	249791	249792
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	103.5	99.5	94	99.5
Field Wet Density (t/m ³) :	1.872	1.887	1.867	1.864
Optimum Moisture Content (%) :	23.6	24.1	22.7	21.9
Moisture Variation :	-0.7	0.1	1.4	0.1
Peak Converted Wet Density (t/m ³) :	1.941	1.972	1.925	1.951
Hilf Density Ratio (%) :	96.5	95.5	97.0	95.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-	J	1	1

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A MOovel

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13897 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 261 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 261 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 261 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %
261	289	30 th July 2018	99.5
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.			

Fill constructed on Lot 261 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 261 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 79 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
www.mornsongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 79 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3 , WALLOON		Page	1 of 1
Sample Number :	250420	250421	250422	250423
Test Number :	286	287	288	289
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	282	-	281	-
Sample Location :	Lot 282	E 465874	Lot 281	E 465852
	E 465864	N 6946620	E 465862	N 6946586
	N 6946607	RL 42.088	N 6946581	RL 42.391
	RL 42.038		RL 42.350	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	19.7	18.9	20.0	21.0
Hilf MDR Number :	250420	250421	250422	250423
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	91	99	97.5
Field Wet Density (t/m ³) :	2.021	1.776	2.042	2.022
Optimum Moisture Content (%) :	19.9	20.8	20.2	21.5
Moisture Variation :	0.2	1.9	0.1	0.5
Peak Converted Wet Density (t/m ³) :	2.048	1.849	2.011	2.034
Hilf Density Ratio (%) :	98.5	96.0	101.5	99.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13898 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 262 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 262 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 262 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
262	286	30 th July 2018	98.5		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks					

Table 1: Summary of Testing

Fill constructed on Lot 262 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 262 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 79 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
www.mornsongeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKL EARTHWORKS SUPERVISION DL18/196	EA, QLD, 4106	Report Number: Report Date : Order Number : Test Method :	DL18/196 - 79 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	raye 1 Of 1		
Sample Number :	250420	250421	250422	250423	
Test Number :	286	287	288	289	
Sampling Method :	-	-	-	-	
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	282	-	281	-	
Sample Location :	Lot 282	E 465874	Lot 281	E 465852	
	E 465864	N 6946620	E 465862	N 6946586	
	N 6946607	RL 42.088	N 6946581	RL 42.391	
	RL 42.038		RL 42.350		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	19.7	18.9	20.0	21.0	
Hilf MDR Number :	250420	250421	250422	250423	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99	91	99	97.5	
Field Wet Density (t/m ³) :	2.021	1.776	2.042	2.022	
Optimum Moisture Content (%) :	19.9	20.8	20.2	21.5	
Moisture Variation :	0.2	1.9	0.1	0.5	
Peak Converted Wet Density (t/m ³) :	2.048	1.849	2.011	2.034	
Hilf Density Ratio (%) :	98.5	96.0	101.5	99.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13899 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 263 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 263 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 263 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
263	303	31 st July 2018	99.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 263 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 263 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 83 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

· Datis Damant	
www.morrisongeo.com	.au
ABN: 51 009 878	399

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	LEA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 83 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1	
Sample Number :	250500	250501	250502	250503	
Test Number :	302	303	304	305	
Sampling Method :	-	_	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	277	-	278	-	
Sample Location :	Lot 277	E 465848	Lot 278	E 465825	
	E 465848	N 6946615	E 465831	N 6946632	
	N 6946634	RL 42.668	N 6946641	RL 42.711	
	RL 42.646		RL 42.690		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	22.2	23.0	24.5	23.9	
Hilf MDR Number :	250500	250501	250502	250503	
Hilf MDR Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	101.5	91	100	91	
Field Wet Density (t/m ³) :	1.913	1.870	1.890	1.858	
Optimum Moisture Content (%) :	21.9	25.2	24.5	26.3	
Moisture Variation :	-0.4	2.1	0.0	2.2	
Peak Converted Wet Density (t/m ³) :	1.827	1.888	1.856	1.891	
Hilf Density Ratio (%) :	104.5	99.0	102.0	98.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	Reported moisture variation does not accurately reflect placement moisture.				

Г

Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY Sign A McOccell cdowall (Brisbane) - Branch Ma

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13900 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 264 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 264 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 264 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
264 287		30 th July 2018	96.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 264 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 264 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 79 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongoo.com au
www.mornsongeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKL EARTHWORKS SUPERVISION DL18/196	EA, QLD, 4106	Report Number: Report Date : Order Number : Test Method :	DL18/196 - 79 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	raye 1 Of 1		
Sample Number :	250420	250421	250422	250423	
Test Number :	286	287	288	289	
Sampling Method :	-	-	-	-	
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	282	-	281	-	
Sample Location :	Lot 282	E 465874	Lot 281	E 465852	
	E 465864	N 6946620	E 465862	N 6946586	
	N 6946607	RL 42.088	N 6946581	RL 42.391	
	RL 42.038		RL 42.350		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	19.7	18.9	20.0	21.0	
Hilf MDR Number :	250420	250421	250422	250423	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99	91	99	97.5	
Field Wet Density (t/m ³) :	2.021	1.776	2.042	2.022	
Optimum Moisture Content (%) :	19.9	20.8	20.2	21.5	
Moisture Variation :	0.2	1.9	0.1	0.5	
Peak Converted Wet Density (t/m ³) :	2.048	1.849	2.011	2.034	
Hilf Density Ratio (%) :	98.5	96.0	101.5	99.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13901 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 265 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 265 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 265 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
265	241	24 th July 2018	100.5		
265	285	26 th July 2018	100.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					

Table 1: Summary of Testing

Fill constructed on Lot 265 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 265 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 66 and 78 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 66 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON		
Sample Number :	249912	249913	249914	249915
Test Number :	238	239	240	241
Sampling Method :	-	-	-	-
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	270	-	271	-
Sample Location :	Lot 270	E 465939	Lot 271	E 465909
	E 465943	N 6946617	E 465916	N 6946624
	N 6946628	RL 42.290	N 6946628	RL 42.189
	RL 42.279		RL 42.130	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.7	23.7	17.7	16.6
Hilf MDR Number :	249912	249913	249914	249915
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104	98	100	90.5
Field Wet Density (t/m ³) :	1.888	1.870	1.860	1.925
Optimum Moisture Content (%) :	20.9	24.2	17.7	18.3
Moisture Variation :	-0.8	0.5	0.0	1.8
Peak Converted Wet Density (t/m ³) :	1.977	1.918	1.923	1.912
Hilf Density Ratio (%) :	95.5	97.5	96.5	100.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			•

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A MOovel

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

in the international second contract

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 78 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 Page 1 of 1	
Sample Number :	250200	250201			
Test Number :	284	285			
Sampling Method :	-	_			
Date Sampled :	26/07/2018	26/07/2018			
Date Tested :	26/07/2018	26/07/2018			
Material Type :	Bulk Fill	Bulk Fill			
Material Source :	On Site (Cut)	On Site (Cut)			
Lot Number :	-	-			
Sample Location :	Road 13	N: 6946634			
	N: 6946653	E: 465912			
	E: 465895	RL: 42.383			
	RL: 42.368				
Test Depth (mm) :	150	150			
Layer Depth (mm) :	-	-			
Maximum Size (mm) :	19	19			
Oversize Wet (%) :	-	-			
Oversize Dry (%) :	-	-			
Oversize Density (t/m ³) :	-	-			
Field Moisture Content (%) :	19.0	17.3			
Hilf MDR Number :	250200	250201			
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1			
Compactive Effort :	Standard	Standard			
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1			
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1			
Moisture Ratio (%) :	114.5	90.5			
Field Wet Density (t/m ³) :	1.883	1.969			
Optimum Moisture Content (%) :	16.6	19.1			
Moisture Variation :	-2.4	1.7			
Peak Converted Wet Density (t/m ³) :	1.987	1.967			
Hilf Density Ratio (%) :	95.0	100.0			
Minimum Specification :	95	95			
Moisture Specification :	+ or - 2%	+ or - 2%			
Site Selection :	-	-			
Soil Description :	CLAY (CH)	CLAY (CH)			
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager

APPROVED SIGNATORY Sign A

iam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13902 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 266 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 266 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 266 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
266	240	24 th July 2018	96.5			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 266 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 266 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 66 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 66 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON		
Sample Number :	249912	249913	249914	249915
Test Number :	238	239	240	241
Sampling Method :	-	-	-	-
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	270	-	271	-
Sample Location :	Lot 270	E 465939	Lot 271	E 465909
	E 465943	N 6946617	E 465916	N 6946624
	N 6946628	RL 42.290	N 6946628	RL 42.189
	RL 42.279		RL 42.130	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.7	23.7	17.7	16.6
Hilf MDR Number :	249912	249913	249914	249915
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104	98	100	90.5
Field Wet Density (t/m ³) :	1.888	1.870	1.860	1.925
Optimum Moisture Content (%) :	20.9	24.2	17.7	18.3
Moisture Variation :	-0.8	0.5	0.0	1.8
Peak Converted Wet Density (t/m ³) :	1.977	1.918	1.923	1.912
Hilf Density Ratio (%) :	95.5	97.5	96.5	100.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			•

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A MOovel

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13903 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 267 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 267 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 267 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
267	242	24 th July 2018	102.5			
267	243	24 th July 2018	100.5			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 267 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 267 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 67 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DI 18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 67 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	e 1 of 1	
Sample Number :	249916	249917	249918	249919	
Test Number :	242	243	244	245	
Sampling Method :	-	-	-	-	
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018	
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	272	-	273	-	
Sample Location :	Lot 272	E 465917	Lot 273	E 465900	
	E 465911	N 6946597	E 465911	N 6946578	
	N 6946602	RL 42.589	N 6946584	RL 42.539	
	RL 42.545		RL 42.527		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	16.8	18.3	15.8	22.0	
Hilf MDR Number :	249916	249917	249918	249919	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	92	92.5	91	96	
Field Wet Density (t/m ³) :	2.032	1.836	1.947	1.895	
Optimum Moisture Content (%) :	18.2	19.8	17.4	22.9	
Moisture Variation :	1.4	1.6	1.6	0.8	
Peak Converted Wet Density (t/m ³) :	1.978	1.826	1.953	1.948	
Hilf Density Ratio (%) :	102.5	100.5	99.5	97.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-		-	•	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A McOnsol

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13904 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 268 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 268 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 268 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %				
268	244	24 th July 2018	99.5				
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.							
Note: Lot numbers Bulk Earthworks.	<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 268 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 268 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 67 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DI 18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 67 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	e 1 of 1	
Sample Number :	249916	249917	249918	249919	
Test Number :	242	243	244	245	
Sampling Method :	-	-	-	-	
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018	
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	272	-	273	-	
Sample Location :	Lot 272	E 465917	Lot 273	E 465900	
	E 465911	N 6946597	E 465911	N 6946578	
	N 6946602	RL 42.589	N 6946584	RL 42.539	
	RL 42.545		RL 42.527		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	16.8	18.3	15.8	22.0	
Hilf MDR Number :	249916	249917	249918	249919	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	92	92.5	91	96	
Field Wet Density (t/m ³) :	2.032	1.836	1.947	1.895	
Optimum Moisture Content (%) :	18.2	19.8	17.4	22.9	
Moisture Variation :	1.4	1.6	1.6	0.8	
Peak Converted Wet Density (t/m ³) :	1.978	1.826	1.953	1.948	
Hilf Density Ratio (%) :	102.5	100.5	99.5	97.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-		-	•	

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A McOnsol

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13905 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 269 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 269 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 269 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
269	206	20 th July 2018	96.0			
269	207	20 th July 2018	96.5			
269	245	24 th July 2018	97.5			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers Bulk Earthworks.	Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks					

Table 1: Summary of Testing

Fill constructed on Lot 269 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 269 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 58 and 67 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: DL18/196 - 58 Report Date : 08/08/2018 Order Number : PO40420 Test Method : AS1289.5.8.1 & 5.	
	WATERLEA ESTATE, STAGE 3	, WALLOON	Fage	
Sample Number :	249701	249702	249703	249704
Test Number :	206	207	208	209
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	253	-	254	-
Sample Location :	Lot 253	E 465892	Lot 254	E 465893
	E 465900	N 6946574	E 465891	N 6946550
	N 6946572	RL 41.74	N 69436538	RL 41.681
	RL 41.723		RL 41.693	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	26.1	9.2	25.5	23.5
Hilf MDR Number :	249701	249702	249703	249704
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104.5	103	103	103
Field Wet Density (t/m ³) :	1.902	1.902	1.803	1.873
Optimum Moisture Content (%) :	25.0	8.9	24.8	22.8
Moisture Variation :	-1.1	-0.2	-0.7	-0.7
Peak Converted Wet Density	1.985	1.971	1.879	1.884
Hilf Density Ratio (%) :	96.0	96.5	96.0	99.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	I

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager

APPROVED SIGNATORY Sign A

NATA Accreditation Number 1162 / 1169

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 67 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3 , WALLOON		Page 1 of 1	
Sample Number :	249916	249917	249918	249919
Test Number :	242	243	244	245
Sampling Method :	-	-	-	-
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	272	-	273	-
Sample Location :	Lot 272	E 465917	Lot 273	E 465900
	E 465911	N 6946597	E 465911	N 6946578
	N 6946602	RL 42.589	N 6946584	RL 42.539
	RL 42.545		RL 42.527	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	16.8	18.3	15.8	22.0
Hilf MDR Number :	249916	249917	249918	249919
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	92	92.5	91	96
Field Wet Density (t/m ³) :	2.032	1.836	1.947	1.895
Optimum Moisture Content (%) :	18.2	19.8	17.4	22.9
Moisture Variation :	1.4	1.6	1.6	0.8
Peak Converted Wet Density (t/m ³) :	1.978	1.826	1.953	1.948
Hilf Density Ratio (%) :	102.5	100.5	99.5	97.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-		-	•

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A McOnsol

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13907 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 271 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 271 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 271 are representative of the fill constructed on Lot 271. The closest tests to Lot 271 were performed on Lot 269 and 272. A summary of tests representative of the fill constructed on Lot 271 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
269	206	20 th July 2018	96.0	
269	207	20 th July 2018	96.5	
269	245	24 th July 2018	97.5	
272	208	20 th July 2018	96.0	
272	209	20 th July 2018	99.5	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of				

Table 1: Summary of Testing

Fill constructed on Lot 271 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 271 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

Bulk Earthworks.

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 58 and 67 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 58 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
	WATERLEA ESTATE, STAGE 3 , WALLOON			
Sample Number :	249701	249702	249703	249704
Test Number :	206	207	208	209
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	253	-	254	-
Sample Location :	Lot 253	E 465892	Lot 254	E 465893
	E 465900	N 6946574	E 465891	N 6946550
	N 6946572	RL 41.74	N 69436538	RL 41.681
	RL 41.723		RL 41.693	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	26.1	9.2	25.5	23.5
Hilf MDR Number :	249701	249702	249703	249704
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104.5	103	103	103
Field Wet Density (t/m ³) :	1.902	1.902	1.803	1.873
Optimum Moisture Content (%) :	25.0	8.9	24.8	22.8
Moisture Variation :	-1.1	-0.2	-0.7	-0.7
Peak Converted Wet Density	1.985	1.971	1.879	1.884
Hilf Density Ratio (%) :	96.0	96.5	96.0	99.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	I

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager

APPROVED SIGNATORY Sign A

NATA Accreditation Number 1162 / 1169

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 67 10/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3 , WALLOON		Page 1 of 1	
Sample Number :	249916	249917	249918	249919
Test Number :	242	243	244	245
Sampling Method :	-	-	-	-
Date Sampled :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Date Tested :	24/07/2018	24/07/2018	24/07/2018	24/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	272	-	273	-
Sample Location :	Lot 272	E 465917	Lot 273	E 465900
	E 465911	N 6946597	E 465911	N 6946578
	N 6946602	RL 42.589	N 6946584	RL 42.539
	RL 42.545		RL 42.527	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	16.8	18.3	15.8	22.0
Hilf MDR Number :	249916	249917	249918	249919
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	92	92.5	91	96
Field Wet Density (t/m ³) :	2.032	1.836	1.947	1.895
Optimum Moisture Content (%) :	18.2	19.8	17.4	22.9
Moisture Variation :	1.4	1.6	1.6	0.8
Peak Converted Wet Density (t/m ³) :	1.978	1.826	1.953	1.948
Hilf Density Ratio (%) :	102.5	100.5	99.5	97.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-		-	•

Accredited for compliance with ISO/IEC 17025 - Testing.

APPROVED SIGNATORY Sign A McOnsol

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13908 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 272 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 272 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 272 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
272	208	20 th July 2018	96.0	
272	209	20 th July 2018	99.5	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 272 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 272 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 58 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 58 08/08/2018 PO40420 AS1289.5.8.1 & 5.7.1
	WATERLEA ESTATE, STAGE 3 , WALLOON			
Sample Number :	249701	249702	249703	249704
Test Number :	206	207	208	209
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	253	-	254	-
Sample Location :	Lot 253	E 465892	Lot 254	E 465893
	E 465900	N 6946574	E 465891	N 6946550
	N 6946572	RL 41.74	N 69436538	RL 41.681
	RL 41.723		RL 41.693	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	26.1	9.2	25.5	23.5
Hilf MDR Number :	249701	249702	249703	249704
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104.5	103	103	103
Field Wet Density (t/m ³) :	1.902	1.902	1.803	1.873
Optimum Moisture Content (%) :	25.0	8.9	24.8	22.8
Moisture Variation :	-1.1	-0.2	-0.7	-0.7
Peak Converted Wet Density	1.985	1.971	1.879	1.884
Hilf Density Ratio (%) :	96.0	96.5	96.0	99.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	I

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager

APPROVED SIGNATORY Sign A

NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual
subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13909 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 273 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 273 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 273 are representative of the fill constructed on Lot 273. The closest tests to Lot 273 were performed on Lot 253 and 272. A summary of tests representative of the fill constructed on Lot 273 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
253	210	20 th July 2018	99.5		
272	208	20 th July 2018	96.0		
272	209	20 th July 2018	99.5		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers Bulk Earthworks.	on test certificates no	t accurate due to lot layout	redesign after completion of		

Table 1: Summary of Testing

Fill constructed on Lot 273 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 273 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 58 and 59 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	ensity Ratio	Report	
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: DL18/196 - 58 Report Date : 08/08/2018 Order Number : P040420 Test Method : AS1289.5.8.1 & 5	
	WATERLEA ESTATE, STAGE 3	, WALLOON	Fage	
Sample Number :	249701	249702	249703	249704
Test Number :	206	207	208	209
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	253	-	254	-
Sample Location :	Lot 253	E 465892	Lot 254	E 465893
	E 465900	N 6946574	E 465891	N 6946550
	N 6946572	RL 41.74	N 69436538	RL 41.681
	RL 41.723		RL 41.693	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	26.1	9.2	25.5	23.5
Hilf MDR Number :	249701	249702	249703	249704
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	104.5	103	103	103
Field Wet Density (t/m ³) :	1.902	1.902	1.803	1.873
Optimum Moisture Content (%) :	25.0	8.9	24.8	22.8
Moisture Variation :	-1.1	-0.2	-0.7	-0.7
Peak Converted Wet Density	1.985	1.971	1.879	1.884
Hilf Density Ratio (%) :	96.0	96.5	96.0	99.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	I

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager

APPROVED SIGNATORY Sign A

NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au

	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: DL18/196 - 59 Report Date : 08/08/2018 Order Number : P040420 Test Method : AS1289.5.8.1 & 5.7	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	1 07 1
Sample Number :	249705	249706	249707	249708
Test Number :	210	211	212	213
Sampling Method :	-	-	-	-
Date Sampled :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Date Tested :	20/07/2018	20/07/2018	20/07/2018	20/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	255	-	256	-
Sample Location :	Lot 255	E 465887	Lot 256	E 465896
	E 465892	N 6946507	E 465897	N 6946495
	N 6946516	RL 41.483	N 6946500	RL 41.480
	RL 41.460		RL 41.5	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	23.7	23.1	23.4	21.4
Hilf MDR Number :	249705	249706	249707	249708
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.4	AS1289.2.1.1
Moisture Ratio (%) :	97.5	101	100.5	101
Field Wet Density (t/m ³) :	1.914	1.935	1.927	1.937
Optimum Moisture Content (%) :	24.3	22.9	23.2	21.2
Moisture Variation :	0.6	-0.2	-0.1	-0.2
Peak Converted Wet Density (t/m ³) :	1.919	1.990	1.969	2.013
Hilf Density Ratio (%) :	99.5	97.0	98.0	96.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	MDR performed by Gold Coas	t Laboratory. Corporate Site	No. 1900.	

Accredited for compliance with ISO/IEC 17025 - Testing.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13912 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 276 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 276 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 276 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
276	288	30 th July 2018	101.5			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 276 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 276 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 79 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
www.mornsongeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196		Report Number: Report Date : Order Number : Test Method :	DL18/196 - 79 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1	
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	1 of 1	
Sample Number :	250420	250421	250422	250423	
Test Number :	286	287	288	289	
Sampling Method :	-	-	-	-	
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	282	-	281	-	
Sample Location :	Lot 282	E 465874	Lot 281	E 465852	
	E 465864	N 6946620	E 465862	N 6946586	
	N 6946607	RL 42.088	N 6946581	RL 42.391	
	RL 42.038		RL 42.350		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	19.7	18.9	20.0	21.0	
Hilf MDR Number :	250420	250421	250422	250423	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99	91	99	97.5	
Field Wet Density (t/m ³) :	2.021	1.776	2.042	2.022	
Optimum Moisture Content (%) :	19.9	20.8	20.2	21.5	
Moisture Variation :	0.2	1.9	0.1	0.5	
Peak Converted Wet Density (t/m ³) :	2.048	1.849	2.011	2.034	
Hilf Density Ratio (%) :	98.5	96.0	101.5	99.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13913 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 277 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 277 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 277 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
277	290	30 th July 2018	99.0		
277	291	30 th July 2018	98.5		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 277 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 277 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 80 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.mc	prrisone	100 000	an
		100.00	

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 80 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1	
Sample Number :	250424	250425	250426	250427	
Test Number :	290	291	292	293	
Sampling Method :			-	-	
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	261	-	269	-	
Sample Location :	Lot 261	E 465846	Lot 269	E 465843	
	E 465862	N 6946562	E 465852	N 6946521	
	N 6946555	RL 42.218	N 6946531	RL 42.001	
	RL 42.250		RL 41.881		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	18.7	19.6	23.6	21.0	
Hilf MDR Number :	250424	250425	250426	250427	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99	90.5	99	98.5	
Field Wet Density (t/m ³) :	2.012	1.953	1.966	1.927	
Optimum Moisture Content (%) :	18.9	21.6	23.9	21.3	
Moisture Variation :	0.2	1.9	0.2	0.2	
Peak Converted Wet Density (t/m ³) :	2.032	1.984	1.971	1.987	
Hilf Density Ratio (%) :	99.0	98.5	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13914 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 278 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 278 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 278 are representative of the fill constructed on Lot 278. The closest tests to Lot 278 were performed on Lot 277 and 279. A summary of tests representative of the fill constructed on Lot 278 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
277	290	30 th July 2018	99.0		
277	291	30 th July 2018	98.5		
279	292	30 th July 2018	100.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers Bulk Earthworks.	<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 278 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 278 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 80 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.mc	prrisone	100 000	an
		100.00	

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 80 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1	
Sample Number :	250424	250425	250426	250427	
Test Number :	290	291	292	293	
Sampling Method :			-	-	
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	261	-	269	-	
Sample Location :	Lot 261	E 465846	Lot 269	E 465843	
	E 465862	N 6946562	E 465852	N 6946521	
	N 6946555	RL 42.218	N 6946531	RL 42.001	
	RL 42.250		RL 41.881		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	150	150	150	150	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	18.7	19.6	23.6	21.0	
Hilf MDR Number :	250424	250425	250426	250427	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99	90.5	99	98.5	
Field Wet Density (t/m ³) :	2.012	1.953	1.966	1.927	
Optimum Moisture Content (%) :	18.9	21.6	23.9	21.3	
Moisture Variation :	0.2	1.9	0.2	0.2	
Peak Converted Wet Density (t/m ³) :	2.032	1.984	1.971	1.987	
Hilf Density Ratio (%) :	99.0	98.5	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13915 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 279 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 279 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 279 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
279	292	30 th July 2018	100.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
Note: Lot numbers on test certificates not accurate due to lot layout redesign after completion of						

Table 1: Summary of Testing

Fill constructed on Lot 279 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 279 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 80 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.mc	prrisone	100 000	an
		100.00	

Hilf Density Ratio Report						
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 80 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1		
Sample Number :	250424	250425	250426	250427		
Test Number :	290	291	292	293		
Sampling Method :			-	-		
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	261	-	269	-		
Sample Location :	Lot 261	E 465846	Lot 269	E 465843		
	E 465862	N 6946562	E 465852	N 6946521		
	N 6946555	RL 42.218	N 6946531	RL 42.001		
	RL 42.250		RL 41.881			
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	150	150	150	150		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	18.7	19.6	23.6	21.0		
Hilf MDR Number :	250424	250425	250426	250427		
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	99	90.5	99	98.5		
Field Wet Density (t/m ³) :	2.012	1.953	1.966	1.927		
Optimum Moisture Content (%) :	18.9	21.6	23.9	21.3		
Moisture Variation :	0.2	1.9	0.2	0.2		
Peak Converted Wet Density (t/m ³) :	2.032	1.984	1.971	1.987		
Hilf Density Ratio (%) :	99.0	98.5	100.0	97.0		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay		
Remarks :	-					

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13916 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 280 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 280 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 280 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
280	293	30 th July 2018	97.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 280 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 280 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 80 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.mc	prrisone	100 000	an
		100.00	

Hilf Density Ratio Report						
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 80 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1		
Sample Number :	250424	250425	250426	250427		
Test Number :	290	291	292	293		
Sampling Method :			-	-		
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	261	-	269	-		
Sample Location :	Lot 261	E 465846	Lot 269	E 465843		
	E 465862	N 6946562	E 465852	N 6946521		
	N 6946555	RL 42.218	N 6946531	RL 42.001		
	RL 42.250		RL 41.881			
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	150	150	150	150		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	18.7	19.6	23.6	21.0		
Hilf MDR Number :	250424	250425	250426	250427		
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	99	90.5	99	98.5		
Field Wet Density (t/m ³) :	2.012	1.953	1.966	1.927		
Optimum Moisture Content (%) :	18.9	21.6	23.9	21.3		
Moisture Variation :	0.2	1.9	0.2	0.2		
Peak Converted Wet Density (t/m ³) :	2.032	1.984	1.971	1.987		
Hilf Density Ratio (%) :	99.0	98.5	100.0	97.0		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay		
Remarks :	-					

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are *Not* Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3281 0900
 F (07) 3281 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13917 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 281 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 281 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 281 are representative of the fill constructed on Lot 281. The closest tests to Lot 281 were performed on Lot 280, 282 and 283. A summary of tests representative of the fill constructed on Lot 281 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
280	293	30 th July 2018	97.0			
282	310	31 st July 2018	103.0			
283	311	31 st July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers Bulk Earthworks.	<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 281 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 281 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 80 and 85 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.mc	prrisone	100 000	an
		100.00	

Hilf Density Ratio Report						
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 80 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1		
Sample Number :	250424	250425	250426	250427		
Test Number :	290	291	292	293		
Sampling Method :			-	-		
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	261	-	269	-		
Sample Location :	Lot 261	E 465846	Lot 269	E 465843		
	E 465862	N 6946562	E 465852	N 6946521		
	N 6946555	RL 42.218	N 6946531	RL 42.001		
	RL 42.250		RL 41.881			
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	150	150	150	150		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	18.7	19.6	23.6	21.0		
Hilf MDR Number :	250424	250425	250426	250427		
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	99	90.5	99	98.5		
Field Wet Density (t/m ³) :	2.012	1.953	1.966	1.927		
Optimum Moisture Content (%) :	18.9	21.6	23.9	21.3		
Moisture Variation :	0.2	1.9	0.2	0.2		
Peak Converted Wet Density (t/m ³) :	2.032	1.984	1.971	1.987		
Hilf Density Ratio (%) :	99.0	98.5	100.0	97.0		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay		
Remarks :	-					

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

APPROVED SIGNATORY Sign A

1162 / 1169 Document Code RF89-11

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKI EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	.EA, QLD, 4106 , WALLOON	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 85 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 1 of 1	
Sample Number :	250508	250509	250510	250511	
Test Number :	310	311	312	313	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	267	-	266	-	
Sample Location :	Lot 267	E 465839	Lot 266	E 465828	
	E 465846	N 6946484	E 465830	N 6946490	
	N 6946489	RL 42.328	N 6946489	RL 42.580	
	RL 42.320 (Final Level)	Final Level	RL 42.550		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	20.9	18.9	18.7	19.4	
Hilf MDR Number :	250508	250509	250510	250511	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	102.5	99.5	99.5	100.5	
Field Wet Density (t/m ³) :	1.992	1.957	1.955	1.935	
Optimum Moisture Content (%) :	20.4	19.0	18.8	19.3	
Moisture Variation :	-0.5	0.1	0.1	-0.1	
(t/m ³) :	1.937	2.001	1.956	1.992	
Hilf Density Ratio (%) :	103.0	98.0	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11
Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13918 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 282 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 282 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 282 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
282	310	31 st July 2018	103.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 282 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 282 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 85 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 85 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250508	250509	250510	250511	
Test Number :	310	311	312	313	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	267	-	266	-	
Sample Location :	Lot 267	E 465839	Lot 266	E 465828	
	E 465846	N 6946484	E 465830	N 6946490	
	N 6946489	RL 42.328	N 6946489	RL 42.580	
	RL 42.320 (Final Level)	Final Level	RL 42.550		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	20.9	18.9	18.7	19.4	
Hilf MDR Number :	250508	250509	250510	250511	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	102.5	99.5	99.5	100.5	
Field Wet Density (t/m ³) :	1.992	1.957	1.955	1.935	
Optimum Moisture Content (%) :	20.4	19.0	18.8	19.3	
Moisture Variation :	-0.5	0.1	0.1	-0.1	
(t/m ³) :	1.937	2.001	1.956	1.992	
Hilf Density Ratio (%) :	103.0	98.0	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13919 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 283 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 283 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 283 are presented in Table 1 below.

Table	1:	Summary of	Testing
-------	----	------------	---------

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
283	311	31 st July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 283 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 283 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 85 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 85 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250508	250509	250510	250511	
Test Number :	310	311	312	313	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	267	-	266	-	
Sample Location :	Lot 267	E 465839	Lot 266	E 465828	
	E 465846	N 6946484	E 465830	N 6946490	
	N 6946489	RL 42.328	N 6946489	RL 42.580	
	RL 42.320 (Final Level)	Final Level	RL 42.550		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	20.9	18.9	18.7	19.4	
Hilf MDR Number :	250508	250509	250510	250511	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	102.5	99.5	99.5	100.5	
Field Wet Density (t/m ³) :	1.992	1.957	1.955	1.935	
Optimum Moisture Content (%) :	20.4	19.0	18.8	19.3	
Moisture Variation :	-0.5	0.1	0.1	-0.1	
(t/m ³) :	1.937	2.001	1.956	1.992	
Hilf Density Ratio (%) :	103.0	98.0	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13920 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 284 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 284 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 284 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
284	312	31 st July 2018	100.0		
284	313	31 st July 2018	97.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 284 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 284 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 85 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 85 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250508	250509	250510	250511	
Test Number :	310	311	312	313	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	267	-	266	-	
Sample Location :	Lot 267	E 465839	Lot 266	E 465828	
	E 465846	N 6946484	E 465830	N 6946490	
	N 6946489	RL 42.328	N 6946489	RL 42.580	
	RL 42.320 (Final Level)	Final Level	RL 42.550		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	20.9	18.9	18.7	19.4	
Hilf MDR Number :	250508	250509	250510	250511	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	102.5	99.5	99.5	100.5	
Field Wet Density (t/m ³) :	1.992	1.957	1.955	1.935	
Optimum Moisture Content (%) :	20.4	19.0	18.8	19.3	
Moisture Variation :	-0.5	0.1	0.1	-0.1	
(t/m ³) :	1.937	2.001	1.956	1.992	
Hilf Density Ratio (%) :	103.0	98.0	100.0	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13921 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 285 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 285 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 285 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
285	314	31 st July 2018	98.0		
285	315	31 st July 2018	98.0		
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 285 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 285 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 86 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf C	Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION	LEA, QLD, 4106 I	Report Number: Report Date : Order Number :	DL18/196 - 86 21/08/2018 PO40420
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	AS1289.5.8.1 & 5.7.1 e 1 of 1
Sample Number :	250512	250513	250514	250515
Test Number :	314	315	316	317
Sampling Method :	-	-	-	-
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	265	-	264	-
Sample Location :	Lot 265	E 465803	Lot 264	E 465818
	E 465807	N 6946494	E 465815	N 6946520
	N 6946492	RL 42.381	N 6946517	RL 43.066
	RL 42.391		RL 43.007	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.6	21.9	23.4	22.1
Hilf MDR Number :	250512	250513	250514	250515
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100.5	101	101	100.5
Field Wet Density (t/m ³) :	1.921	1.907	1.939	2.037
Optimum Moisture Content (%) :	21.5	21.7	23.2	22.0
Moisture Variation :	-0.1	-0.2	-0.2	-0.1
Peak Converted Wet Density (t/m ³) :	1.961	1.942	1.946	1.955
Hilf Density Ratio (%) :	98.0	98.0	99.5	104.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-	·	•	

Accredited for compliance with ISO/IEC 17025.

MOarde Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13922 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 286 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 286 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 286 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
286	316	31 st July 2018	99.5	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 286 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 286 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 86 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf C	Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number :	DL18/196 - 86 21/08/2018 PO40420
Location:			Page	Page 1 of 1
Sample Number :	250512	250513	250514	250515
Test Number :	314	315	316	317
Sampling Method :	-	-	-	-
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	265	-	264	-
Sample Location :	Lot 265	E 465803	Lot 264	E 465818
	E 465807	N 6946494	E 465815	N 6946520
	N 6946492	RL 42.381	N 6946517	RL 43.066
	RL 42.391		RL 43.007	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.6	21.9	23.4	22.1
Hilf MDR Number :	250512	250513	250514	250515
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100.5	101	101	100.5
Field Wet Density (t/m ³) :	1.921	1.907	1.939	2.037
Optimum Moisture Content (%) :	21.5	21.7	23.2	22.0
Moisture Variation :	-0.1	-0.2	-0.2	-0.1
Peak Converted Wet Density	1.961	1.942	1.946	1.955
Hilf Density Ratio (%) :	98.0	98.0	99.5	104.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-	1	1	1

Accredited for compliance with ISO/IEC 17025.

MOarde Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13923 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 287 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 287 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 287 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
287	301	30 th July 2018	96.5	
287	317	31 st July 2018	104.0	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 287 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 287 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 82 and 86 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf [Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION		Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420
Project Number : Location:	Test Method : Page	AS1289.5.8.1 & 5.7.1 1 of 1		
Sample Number :	250432	250433	250434	250435
Test Number :	298	299	300	301
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	263	-	262	264
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264
	E 465828	N 6946591	E 465825	E 465820
	N 6946552	RL 42.299	N 6946576	N 6946522
	RL 42.250		RL 42.474	RL 42.301
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	18.9	19.3	19.6	20.3
Hilf MDR Number :	250432	250433	250434	250435
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	99.5	91.5	98.5
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6
Moisture Variation :	0.1	0.1	1.7	0.3
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf C	Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number :	DL18/196 - 86 21/08/2018 PO40420
Location:			Page	Page 1 of 1
Sample Number :	250512	250513	250514	250515
Test Number :	314	315	316	317
Sampling Method :	-	-	-	-
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	265	-	264	-
Sample Location :	Lot 265	E 465803	Lot 264	E 465818
	E 465807	N 6946494	E 465815	N 6946520
	N 6946492	RL 42.381	N 6946517	RL 43.066
	RL 42.391		RL 43.007	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.6	21.9	23.4	22.1
Hilf MDR Number :	250512	250513	250514	250515
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100.5	101	101	100.5
Field Wet Density (t/m ³) :	1.921	1.907	1.939	2.037
Optimum Moisture Content (%) :	21.5	21.7	23.2	22.0
Moisture Variation :	-0.1	-0.2	-0.2	-0.1
Peak Converted Wet Density	1.961	1.942	1.946	1.955
Hilf Density Ratio (%) :	98.0	98.0	99.5	104.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-	1	1	1

Accredited for compliance with ISO/IEC 17025.

MOarde Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13924 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 288 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 288 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 288 are representative of the fill constructed on Lot 288. The closest tests to Lot 288 were performed on Lot 287 and 289. A summary of tests representative of the fill constructed on Lot 288 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %	
287	301	30 th July 2018	96.5	
287	317	31 st July 2018	104.0	
289	298	30 th July 2018	96.0	
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.				
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 288 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 288 can be termed as "Controlled Fill" in accordance with AS 2880-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 82 and 86 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf [Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION		Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420
Project Number : Location:	Test Method : Page	AS1289.5.8.1 & 5.7.1 1 of 1		
Sample Number :	250432	250433	250434	250435
Test Number :	298	299	300	301
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	263	-	262	264
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264
	E 465828	N 6946591	E 465825	E 465820
	N 6946552	RL 42.299	N 6946576	N 6946522
	RL 42.250		RL 42.474	RL 42.301
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	18.9	19.3	19.6	20.3
Hilf MDR Number :	250432	250433	250434	250435
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	99.5	91.5	98.5
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6
Moisture Variation :	0.1	0.1	1.7	0.3
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf C	Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION		Report Number: Report Date : Order Number :	DL18/196 - 86 21/08/2018 PO40420
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Page	AS1289.5.8.1 & 5.7.1 e 1 of 1
Sample Number :	250512	250513	250514	250515
Test Number :	314	315	316	317
Sampling Method :	-	-	-	-
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	265	-	264	-
Sample Location :	Lot 265	E 465803	Lot 264	E 465818
	E 465807	N 6946494	E 465815	N 6946520
	N 6946492	RL 42.381	N 6946517	RL 43.066
	RL 42.391		RL 43.007	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	21.6	21.9	23.4	22.1
Hilf MDR Number :	250512	250513	250514	250515
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100.5	101	101	100.5
Field Wet Density (t/m ³) :	1.921	1.907	1.939	2.037
Optimum Moisture Content (%) :	21.5	21.7	23.2	22.0
Moisture Variation :	-0.1	-0.2	-0.2	-0.1
Peak Converted Wet Density (t/m ³) :	1.961	1.942	1.946	1.955
Hilf Density Ratio (%) :	98.0	98.0	99.5	104.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-	·	•	

Accredited for compliance with ISO/IEC 17025.

MOarde Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3289 0900
 F (07) 3289 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13926 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 289 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 289 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 289 are representative of the fill constructed on Lot 289. The closest tests to Lot 289 were performed on Lot 527. A summary of tests representative of the fill constructed on Lot 289 are presented in Table 1 below.

Table 1	:	Summary	of	Testing
---------	---	---------	----	---------

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
289	298	30 th July 2018	96.0			
Note: Laboratory Standard Test Methods Used: AS1289.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Fill constructed on Lot 289 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 289 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 82 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf [Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION	LEA, QLD, 4106 N	Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420
Project Number : Location:	DL18/196 WATERLEA ESTATE, STAGE 3	, WALLOON	Test Method : Page	AS1289.5.8.1 & 5.7.1 1 of 1
Sample Number :	250432	250433	250434	250435
Test Number :	298	299	300	301
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	263	-	262	264
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264
	E 465828	N 6946591	E 465825	E 465820
	N 6946552	RL 42.299	N 6946576	N 6946522
	RL 42.250		RL 42.474	RL 42.301
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	18.9	19.3	19.6	20.3
Hilf MDR Number :	250432	250433	250434	250435
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	99.5	91.5	98.5
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6
Moisture Variation :	0.1	0.1	1.7	0.3
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13926 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 290 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 290 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 290 are representative of the fill constructed on Lot 290. The closest tests to Lot 290 were performed on Lot 289 and 291. A summary of tests representative of the fill constructed on Lot 290 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
289	298	30 th July 2018	96.0		
291	300	30 th July 2018	97.5		
291	309	31 st July 2018	98.5		
Note: Laboratory Standard Test Methods Used: AS1290.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers of Bulk Earthworks.	<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.				

Table 1: Summary of Testing

Fill constructed on Lot 290 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 290 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 82 and 84 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf [Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION	LEA, QLD, 4106 N	Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420
Project Number : Location:	DL18/196 WATERLEA ESTATE, STAGE 3	, WALLOON	Test Method : Page	AS1289.5.8.1 & 5.7.1 1 of 1
Sample Number :	250432	250433	250434	250435
Test Number :	298	299	300	301
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	263	-	262	264
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264
	E 465828	N 6946591	E 465825	E 465820
	N 6946552	RL 42.299	N 6946576	N 6946522
	RL 42.250		RL 42.474	RL 42.301
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	18.9	19.3	19.6	20.3
Hilf MDR Number :	250432	250433	250434	250435
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	99.5	91.5	98.5
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6
Moisture Variation :	0.1	0.1	1.7	0.3
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.me	orrisong	jeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 84 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250504	250505	250506	250507	
Test Number :	306	307	308	309	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	279	-	280	-	
Sample Location :	Lot 279	E 465837	Lot 280	E 465830	
	E 465826	N 6946608	E 465825	N 6946582	
	N 6946614	RL 42.827	N 6946592	RL 42.818	
	RL 42.803		RL 42.812		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	21.1	22.7	21.5	20.0	
Hilf MDR Number :	250504	250505	250506	250507	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99.5	101	102	101	
Field Wet Density (t/m ³) :	1.964	1.950	1.973	1.972	
Optimum Moisture Content (%) :	21.2	22.5	21.1	19.8	
Moisture Variation :	0.1	-0.1	-0.4	-0.2	
Peak Converted Wet Density (t/m ³) :	1.971	1.840	1.973	2.002	
Hilf Density Ratio (%) :	99.5	106.0	100.0	98.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :					
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13927 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 291 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 291 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

- 2 -

A summary of tests representative of the fill constructed on Lot 291 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
291	300	30 th July 2018	97.5		
291	309	31 st July 2018	98.5		
Note: Laboratory Standard Test Methods Used: AS1291.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 291 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 291 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 82 and 84 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf [Density Ratio	Report	
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION	LEA, QLD, 4106 N	Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420
Project Number : Location:	DL18/196 WATERLEA ESTATE, STAGE 3	, WALLOON	Test Method : Page	AS1289.5.8.1 & 5.7.1 1 of 1
Sample Number :	250432	250433	250434	250435
Test Number :	298	299	300	301
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	263	-	262	264
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264
	E 465828	N 6946591	E 465825	E 465820
	N 6946552	RL 42.299	N 6946576	N 6946522
	RL 42.250		RL 42.474	RL 42.301
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	18.9	19.3	19.6	20.3
Hilf MDR Number :	250432	250433	250434	250435
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	99	99.5	91.5	98.5
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6
Moisture Variation :	0.1	0.1	1.7	0.3
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.me	orrisong	jeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 84 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250504	250505	250506	250507	
Test Number :	306	307	308	309	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	279	-	280	-	
Sample Location :	Lot 279	E 465837	Lot 280	E 465830	
	E 465826	N 6946608	E 465825	N 6946582	
	N 6946614	RL 42.827	N 6946592	RL 42.818	
	RL 42.803		RL 42.812		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	21.1	22.7	21.5	20.0	
Hilf MDR Number :	250504	250505	250506	250507	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99.5	101	102	101	
Field Wet Density (t/m ³) :	1.964	1.950	1.973	1.972	
Optimum Moisture Content (%) :	21.2	22.5	21.1	19.8	
Moisture Variation :	0.1	-0.1	-0.4	-0.2	
Peak Converted Wet Density (t/m ³) :	1.971	1.840	1.973	2.002	
Hilf Density Ratio (%) :	99.5	106.0	100.0	98.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :					
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13928 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 292 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 292 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

- 2 -

A summary of tests representative of the fill constructed on Lot 292 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
292	299	30 th July 2018	97.0		
292	308	31 st July 2018	100.0		
Note: Laboratory Standard Test Methods Used: AS1292.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 292 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 292 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 82 and 84 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au		
	Hilf [Density Ratio	Report			
Client : Address : Project Name :	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION	LEA, QLD, 4106 N	Report Number: Report Date : Order Number :	DL18/196 - 82 21/08/2018 PO40420		
Project Number : Location:	Project Number : DL18/196 Test Method : AS1289.5.8.1 & 5.7.1 Location: WATERLEA ESTATE, STAGE 3, WALLOON Page 1 of 1					
Sample Number :	250432	250433	250434	250435		
Test Number :	298	299	300	301		
Sampling Method :	-	-	-	-		
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	263	-	262	264		
Sample Location :	Lot 263	E 465819	Lot 262	Lot 264		
	E 465828	N 6946591	E 465825	E 465820		
	N 6946552	RL 42.299	N 6946576	N 6946522		
	RL 42.250		RL 42.474	RL 42.301		
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	150	150	150	150		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	18.9	19.3	19.6	20.3		
Hilf MDR Number :	250432	250433	250434	250435		
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	99	99.5	91.5	98.5		
Field Wet Density (t/m ³) :	1.975	1.934	1.918	1.938		
Optimum Moisture Content (%) :	19.0	19.4	21.4	20.6		
Moisture Variation :	0.1	0.1	1.7	0.3		
Peak Converted Wet Density (t/m ³) :	2.056	1.994	1.964	2.005		
Hilf Density Ratio (%) :	96.0	97.0	97.5	96.5		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay		
Remarks :	-					

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sian A

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.me	orrisong	jeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 84 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250504	250505	250506	250507	
Test Number :	306	307	308	309	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	279	-	280	-	
Sample Location :	Lot 279	E 465837	Lot 280	E 465830	
	E 465826	N 6946608	E 465825	N 6946582	
	N 6946614	RL 42.827	N 6946592	RL 42.818	
	RL 42.803		RL 42.812		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	21.1	22.7	21.5	20.0	
Hilf MDR Number :	250504	250505	250506	250507	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99.5	101	102	101	
Field Wet Density (t/m ³) :	1.964	1.950	1.973	1.972	
Optimum Moisture Content (%) :	21.2	22.5	21.1	19.8	
Moisture Variation :	0.1	-0.1	-0.4	-0.2	
Peak Converted Wet Density (t/m ³) :	1.971	1.840	1.973	2.002	
Hilf Density Ratio (%) :	99.5	106.0	100.0	98.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :					
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13929 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 293 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 293 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 293 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
293	306	31 st July 2018	99.5		
293	307	31 st July 2018	106.0		
Note: Laboratory Standard Test Methods Used: AS1293.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 293 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 293 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 84 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.me	orrisong	jeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 84 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 e 1 of 1	
Sample Number :	250504	250505	250506	250507	
Test Number :	306	307	308	309	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	279	-	280	-	
Sample Location :	Lot 279	E 465837	Lot 280	E 465830	
	E 465826	N 6946608	E 465825	N 6946582	
	N 6946614	RL 42.827	N 6946592	RL 42.818	
	RL 42.803		RL 42.812		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	21.1	22.7	21.5	20.0	
Hilf MDR Number :	250504	250505	250506	250507	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99.5	101	102	101	
Field Wet Density (t/m ³) :	1.964	1.950	1.973	1.972	
Optimum Moisture Content (%) :	21.2	22.5	21.1	19.8	
Moisture Variation :	0.1	-0.1	-0.4	-0.2	
Peak Converted Wet Density (t/m ³) :	1.971	1.840	1.973	2.002	
Hilf Density Ratio (%) :	99.5	106.0	100.0	98.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :					
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13936 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 300 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 300 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 300 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
300	302	31 st July 2018	104.5		
Note: Laboratory Standard Test Methods Used: AS1300.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 300 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 300 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 83 Brochure: Important Information About Your Geotechnical Engineering Report

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

· Datis Damant	
www.morrisongeo.com	.au
ABN: 51 009 878	399

Hilf Density Ratio Report				
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: DL18/196 - 83 Report Date : 21/08/2018 Order Number : P040420 Test Method : AS1289.5.8.1 & 5.7 Page 1 of 1	
Sample Number :	250500	250501	250502	250503
Test Number :	302	303	304	305
Sampling Method :	-	_	-	-
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	277	-	278	-
Sample Location :	Lot 277	E 465848	Lot 278	E 465825
	E 465848	N 6946615	E 465831	N 6946632
	N 6946634	RL 42.668	N 6946641	RL 42.711
	RL 42.646		RL 42.690	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	22.2	23.0	24.5	23.9
Hilf MDR Number :	250500	250501	250502	250503
Hilf MDR Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	101.5	91	100	91
Field Wet Density (t/m ³) :	1.913	1.870	1.890	1.858
Optimum Moisture Content (%) :	21.9	25.2	24.5	26.3
Moisture Variation :	-0.4	2.1	0.0	2.2
Peak Converted Wet Density (t/m ³) :	1.827	1.888	1.856	1.891
Hilf Density Ratio (%) :	104.5	99.0	102.0	98.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	Reported moisture variation does not accurately reflect placement moisture.			

Г

Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY Sign A McOccell cdowall (Brisbane) - Branch Ma

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13937 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 301 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 301 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 301 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
301	304	31 st July 2018	102.0		
301	305	31 st July 2018	98.0		
Note: Laboratory Standard Test Methods Used: AS1301.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 301 has been observed to be placed and compacted in accordance with the Brief, The fill on Lot 301 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: Imcdowall@morrisongeo.com.au

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 - 83 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

· Datis Damant	
www.morrisongeo.com	.au
ABN: 51 009 878	899

Hilf Density Ratio Report						
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 83 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 age 1 of 1		
Sample Number :	250500	250501	250502	250503		
Test Number :	302	303	304	305		
Sampling Method :	-	_	-	-		
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018		
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	277	-	278	-		
Sample Location :	Lot 277	E 465848	Lot 278	E 465825		
	E 465848	N 6946615	E 465831	N 6946632		
	N 6946634	RL 42.668	N 6946641	RL 42.711		
	RL 42.646		RL 42.690			
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	-	-	-	-		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	22.2	23.0	24.5	23.9		
Hilf MDR Number :	250500	250501	250502	250503		
Hilf MDR Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	101.5	91	100	91		
Field Wet Density (t/m ³) :	1.913	1.870	1.890	1.858		
Optimum Moisture Content (%) :	21.9	25.2	24.5	26.3		
Moisture Variation :	-0.4	2.1	0.0	2.2		
Peak Converted Wet Density (t/m ³) :	1.827	1.888	1.856	1.891		
Hilf Density Ratio (%) :	104.5	99.0	102.0	98.0		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)		
Remarks :	Reported moisture variation doe	Reported moisture variation does not accurately reflect placement moisture.				

Г

Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY Sign A McOccell cdowall (Brisbane) - Branch Ma

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13938 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 302 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 302 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 302 are representative of the fill constructed on Lot 302. The closest tests to Lot 302 were performed on Lot 293. A summary of tests representative of the fill constructed on Lot 302 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
293	306	31 st July 2018	99.5			
293	307	31 st July 2018	106.0			
Note: Laboratory Standard Test Methods Used: AS1302.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 302 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 302 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

10 DOCK L. McDOWALL

E. MCDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 84 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.me	orrisong	jeo.com.au

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 84 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 ge 1 of 1	
Sample Number :	250504	250505	250506	250507	
Test Number :	306	307	308	309	
Sampling Method :	-	-	-	-	
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	279	-	280	-	
Sample Location :	Lot 279	E 465837	Lot 280	E 465830	
	E 465826	N 6946608	E 465825	N 6946582	
	N 6946614	RL 42.827	N 6946592	RL 42.818	
	RL 42.803		RL 42.812		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	21.1	22.7	21.5	20.0	
Hilf MDR Number :	250504	250505	250506	250507	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	99.5	101	102	101	
Field Wet Density (t/m ³) :	1.964	1.950	1.973	1.972	
Optimum Moisture Content (%) :	21.2	22.5	21.1	19.8	
Moisture Variation :	0.1	-0.1	-0.4	-0.2	
Peak Converted Wet Density (t/m ³) :	1.971	1.840	1.973	2.002	
Hilf Density Ratio (%) :	99.5	106.0	100.0	98.5	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :					
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sign A

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13939 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 303 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 303 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 303 are representative of the fill constructed on Lot 303. The closest tests to Lot 303 were performed on Lot 301. A summary of tests representative of the fill constructed on Lot 303 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
301	304	31 st July 2018	102.0			
301	305	31 st July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1303.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 303 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 303 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

10 DOCK L. McDOWALL

E. MCDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 83 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

· Datis Damant	
www.morrisongeo.com	.au
ABN: 51 009 878	899

Hilf Density Ratio Report						
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 83 21/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 age 1 of 1		
Sample Number :	250500	250501	250502	250503		
Test Number :	302	303	304	305		
Sampling Method :	-	_	-	-		
Date Sampled :	31/07/2018	31/07/2018	31/07/2018	31/07/2018		
Date Tested :	31/07/2018	31/07/2018	31/07/2018	31/07/2018		
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill		
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)		
Lot Number :	277	-	278	-		
Sample Location :	Lot 277	E 465848	Lot 278	E 465825		
	E 465848	N 6946615	E 465831	N 6946632		
	N 6946634	RL 42.668	N 6946641	RL 42.711		
	RL 42.646		RL 42.690			
Test Depth (mm) :	150	150	150	150		
Layer Depth (mm) :	-	-	-	-		
Maximum Size (mm) :	19	19	19	19		
Oversize Wet (%) :	-	-	-	-		
Oversize Dry (%) :	-	-	-	-		
Oversize Density (t/m ³) :	-	-	-	-		
Field Moisture Content (%) :	22.2	23.0	24.5	23.9		
Hilf MDR Number :	250500	250501	250502	250503		
Hilf MDR Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Compactive Effort :	Standard	Standard	Standard	Standard		
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1		
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1		
Moisture Ratio (%) :	101.5	91	100	91		
Field Wet Density (t/m ³) :	1.913	1.870	1.890	1.858		
Optimum Moisture Content (%) :	21.9	25.2	24.5	26.3		
Moisture Variation :	-0.4	2.1	0.0	2.2		
Peak Converted Wet Density (t/m ³) :	1.827	1.888	1.856	1.891		
Hilf Density Ratio (%) :	104.5	99.0	102.0	98.0		
Minimum Specification :	95	95	95	95		
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%		
Site Selection :	-	-	-	-		
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)		
Remarks :	Reported moisture variation doe	Reported moisture variation does not accurately reflect placement moisture.				

Г

Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY Sign A McOccell cdowall (Brisbane) - Branch Ma

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13940 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 304 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 304 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 304 are representative of the fill constructed on Lot 304. The closest tests to Lot 304 were performed on Lot 306. A summary of tests representative of the fill constructed on Lot 304 are presented in Table 1 below.

Table	1:	Summary	of	Testing
-------	----	---------	----	---------

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
306	281	26 th July 2018	101.5		
Note: Laboratory Standard Test Methods Used: AS1304.5.8.1, 5.7.1, 2.1.1.					

Fill constructed on Lot 304 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 304 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 77 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au				
	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 77 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 ± 1 of 1
Sample Number :	250196	250197	250198	250199
Test Number :	230190	230137	230130	283
Sampling Method :	-	-	-	-
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	286	-	-	-
Sample Location :	Lot 286	N: 6946693	Road 13	N: 6946664
	N: 6946689	E: 465789	N: 6946661	E: 465829
	E: 465809	RL: 43.117	E: 465847	RL: 42.481
	RL: 43.149		RL: 42.450	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	27.0	24.8	18.1	18.6
Hilf MDR Number :	250196	250197	250198	250199
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100	93	90.5	101
Field Wet Density (t/m ³) :	1.875	1.895	1.870	1.987
Optimum Moisture Content (%) :	27.0	26.7	20.0	18.4
Moisture Variation :	0.0	1.8	1.8	-0.2
Peak Converted Wet Density (t/m ³) :	1.914	1.864	1.962	2.050
Hilf Density Ratio (%) :	98.0	101.5	95.5	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-

CLAY (CH)

Soil Description :

Remarks :

Accredited for compliance with ISO/IEC 17025.

CLAY (CH)

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

CLAY (CH)

Document Code RF89-11

CLAY (CH)

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13941 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 305 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 305 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

Tests performed on filling operations near Lot 305 are representative of the fill constructed on Lot 305. The closest tests to Lot 305 were performed on Lot 306. A summary of tests representative of the fill constructed on Lot 305 are presented in Table 1 below.

Table	1:	Summary	of	Testing
-------	----	---------	----	---------

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
306	281	26 th July 2018	101.5			
Note: Laboratory Standard Test Methods Used: AS1305.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 305 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 305 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 77 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au					
	Hilf C	Density Ratio	Report		
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	LEA, QLD, 4106 N	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 77 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 ± 1 of 1	
Sample Number :	250196	250197	250198	250199	
Test Number :	230190	230157	230130	283	
Sampling Method :	-	-	-	-	
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	286	-	-	-	
Sample Location :	Lot 286	N: 6946693	Road 13	N: 6946664	
	N: 6946689	E: 465789	N: 6946661	E: 465829	
	E: 465809	RL: 43.117	E: 465847	RL: 42.481	
	RL: 43.149		RL: 42.450		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	27.0	24.8	18.1	18.6	
Hilf MDR Number :	250196	250197	250198	250199	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	100	93	90.5	101	
Field Wet Density (t/m ³) :	1.875	1.895	1.870	1.987	
Optimum Moisture Content (%) :	27.0	26.7	20.0	18.4	
Moisture Variation :	0.0	1.8	1.8	-0.2	
Peak Converted Wet Density (t/m ³) :	1.914	1.864	1.962	2.050	
Hilf Density Ratio (%) :	98.0	101.5	95.5	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	

CLAY (CH)

Soil Description :

Remarks :

Accredited for compliance with ISO/IEC 17025.

CLAY (CH)

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

CLAY (CH)

Document Code RF89-11

CLAY (CH)

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13942 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 306 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 306 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 306 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
306	281	26 th July 2018	101.5			
Note: Laboratory Standard Test Methods Used: AS1306.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 306 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 306 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 77 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au					
	Hilf C	Density Ratio	Report		
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCK EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3	LEA, QLD, 4106 N	Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 77 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 ± 1 of 1	
Sample Number :	250196	250197	250198	250199	
Test Number :	230190	230157	230130	283	
Sampling Method :	-	-	-	-	
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	286	-	-	-	
Sample Location :	Lot 286	N: 6946693	Road 13	N: 6946664	
	N: 6946689	E: 465789	N: 6946661	E: 465829	
	E: 465809	RL: 43.117	E: 465847	RL: 42.481	
	RL: 43.149		RL: 42.450		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	27.0	24.8	18.1	18.6	
Hilf MDR Number :	250196	250197	250198	250199	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	100	93	90.5	101	
Field Wet Density (t/m ³) :	1.875	1.895	1.870	1.987	
Optimum Moisture Content (%) :	27.0	26.7	20.0	18.4	
Moisture Variation :	0.0	1.8	1.8	-0.2	
Peak Converted Wet Density (t/m ³) :	1.914	1.864	1.962	2.050	
Hilf Density Ratio (%) :	98.0	101.5	95.5	97.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	

CLAY (CH)

Soil Description :

Remarks :

Accredited for compliance with ISO/IEC 17025.

CLAY (CH)

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

CLAY (CH)

Document Code RF89-11

CLAY (CH)

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

Brisbane Office Job Number: DL18/196 Ref No: 13933 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 297 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 297 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Compaction testing at the Waterlea Estate, Stage 3 Development was carried out at a frequency of 1 test per 500m³ of placed and compacted fill as defined in AS3798 Table 8.1. Test locations were selected using Random Stratified methods. Compaction testing was carried out at frequencies representative of the fill volume as a mass. On this basis, compaction testing was not required on each individual Lot.

A summary of tests representative of the fill constructed on Lot 297 are presented in Table 1 below.

Table	1:	Summary of Testing	
-------	----	---------------------------	--

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
297	297	30 th July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1297.5.8.1, 5.7.1, 2.1.1.						

Fill constructed on Lot 297 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 297 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 81 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.m	norrisongeo.com.au
	Hilf C	Density Ratio	Report	
Client :	CCA WINSLOW		Report Number:	DL18/196 - 81
Address :	1587 IPSWICH ROAD, ROCK	LEA, QLD, 4106	Report Date :	21/08/2018
Project Name :	EARTHWORKS SUPERVISION	4	Order Number :	PO40420
Project Number :	DL18/196		Test Method :	AS1289.5.8.1 & 5.7.1
Location:	WATERLEA ESTATE, STAGE 3	, WALLOON	Pa	age 1 of 1
Sample Number :	250428	250429	250430	250431
Test Number :	294	295	296	297
Sampling Method :	-	-	-	-
Date Sampled :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Date Tested :	30/07/2018	30/07/2018	30/07/2018	30/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	295	-	296	297
Sample Location :	Lot 295	E 465957	Lot 296	Lot 297
	E 465952	N 6946704	E 465935	E 465910
	N 6946700	RL 43.862	N 6946700	N 6946709
	RL 43.880 (Final Level)	(Final Level)	RL 44.035 (Final Level)	RL 44.004 (Final Level)
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-

	RL 43.880 (Final Level)	(Final Level)	RL 44.035 (Final Level)	RL 44.004 (Final Level)
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	150	150	150	150
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	20.7	20.8	21.1	20.4
Hilf MDR Number :	250428	250429	250430	250431
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	93	92	91.5	92.5
Field Wet Density (t/m ³) :	1.835	1.869	1.757	1.864
Optimum Moisture Content (%) :	22.2	22.6	23.0	22.1
Moisture Variation :	1.5	1.8	1.9	1.7
Peak Converted Wet Density (t/m ³) :	1.923	1.910	1.846	1.905
Hilf Density Ratio (%) :	95.5	98.0	95.0	98.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	Silty Clay	Silty Clay	Silty Clay	Silty Clay
Remarks :	-		1	

Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY Sian A MOarde

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

Document Code RF89-11

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

IIGER06085.0MRP

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3083), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13944 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 308 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 308 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

A summary of tests representative of the fill constructed on Lot 308 are presented in Table 1 below.

Table	1:	Summary of	Testing
-------	----	------------	---------

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
308	277	26 th July 2018	98.5		
Note: Laboratory Standard Test Methods Used: AS1308.5.8.1, 5.7.1, 2.1.1.					

Fill constructed on Lot 308 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 308 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 76 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf	Density Ratio	Report	
Client : CCA WINSLOW Address : 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 Project Name : EARTHWORKS SUPERVISION Project Number : DL18/196 Location : WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 76 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1	
Sample Number :	250192	250193	250194	250195
Test Number :	230192	230195	230194	230195
Sampling Method :	-	-	-	-
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	288	-	287	-
Sample Location :	Lot 288	N: 6946693	Lot 287	N: 6946696
	N: 6946700	E: 465826	N: 6946684	E: 465833
	E: 465838	RL: 42.971	E: 465831	RL: 43.308
	RL: 42.946		RL: 43.354	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	24.0	20.5	27.0	27.0
Hilf MDR Number :	250192	250193	250194	250195
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	101.5	99.5	95	112
Field Wet Density (t/m ³) :	1.909	1.928	1.902	1.900
Optimum Moisture Content (%) :	23.6	20.6	28.4	24.1
Moisture Variation :	-0.4	0.1	1.3	-2.9
Peak Converted Wet Density (t/m ³) :	1.962	1.960	1.859	1.946
Hilf Density Ratio (%) :	97.5	98.5	102.5	97.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3093), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13945 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 309 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 309 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

A summary of tests representative of the fill constructed on Lot 309 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
309	278	26 th July 2018	102.5		
309	279	26 th July 2018	97.5		
309	280	26 th July 2018	98.0		
Note: Laboratory Standard Test Methods Used: AS1309.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 309 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 309 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 76 and 77 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

			www.mo	rrisongeo.com.au
	Hilf	Density Ratio	Report	
Client : CCA WINSLOW Address : 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 Project Name : EARTHWORKS SUPERVISION Project Number : DL18/196 Location : WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 76 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1	
Sample Number :	250192	250193	250194	250195
Test Number :	230192	230195	230194	230195
Sampling Method :	-	-	-	-
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	288	-	287	-
Sample Location :	Lot 288	N: 6946693	Lot 287	N: 6946696
	N: 6946700	E: 465826	N: 6946684	E: 465833
	E: 465838	RL: 42.971	E: 465831	RL: 43.308
	RL: 42.946		RL: 43.354	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	24.0	20.5	27.0	27.0
Hilf MDR Number :	250192	250193	250194	250195
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	101.5	99.5	95	112
Field Wet Density (t/m ³) :	1.909	1.928	1.902	1.900
Optimum Moisture Content (%) :	23.6	20.6	28.4	24.1
Moisture Variation :	-0.4	0.1	1.3	-2.9
Peak Converted Wet Density (t/m ³) :	1.962	1.960	1.859	1.946
Hilf Density Ratio (%) :	97.5	98.5	102.5	97.5
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)
Remarks :	-			

Accredited for compliance with ISO/IEC 17025.

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au				
	Hilf C	Density Ratio	Report	
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 77 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 ± 1 of 1
Sample Number :	250196	250197	250198	250199
Test Number :	230190	230137	230130	283
Sampling Method :	-	-	-	-
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)
Lot Number :	286	-	-	-
Sample Location :	Lot 286	N: 6946693	Road 13	N: 6946664
	N: 6946689	E: 465789	N: 6946661	E: 465829
	E: 465809	RL: 43.117	E: 465847	RL: 42.481
	RL: 43.149		RL: 42.450	
Test Depth (mm) :	150	150	150	150
Layer Depth (mm) :	-	-	-	-
Maximum Size (mm) :	19	19	19	19
Oversize Wet (%) :	-	-	-	-
Oversize Dry (%) :	-	-	-	-
Oversize Density (t/m ³) :	-	-	-	-
Field Moisture Content (%) :	27.0	24.8	18.1	18.6
Hilf MDR Number :	250196	250197	250198	250199
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1
Compactive Effort :	Standard	Standard	Standard	Standard
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1
Moisture Ratio (%) :	100	93	90.5	101
Field Wet Density (t/m ³) :	1.875	1.895	1.870	1.987
Optimum Moisture Content (%) :	27.0	26.7	20.0	18.4
Moisture Variation :	0.0	1.8	1.8	-0.2
Peak Converted Wet Density (t/m ³) :	1.914	1.864	1.962	2.050
Hilf Density Ratio (%) :	98.0	101.5	95.5	97.0
Minimum Specification :	95	95	95	95
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%
Site Selection :	-	-	-	-

CLAY (CH)

Soil Description :

Remarks :

Accredited for compliance with ISO/IEC 17025.

CLAY (CH)

MOowall Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number 1162 / 1169

APPROVED SIGNATORY Sian A

CLAY (CH)

Document Code RF89-11

CLAY (CH)

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

 Brisbane | Gold Coast | Maroochydore

 Unit 1, 35 Limestone Street (PO Box 3103), Darra Q 4076
 P (07) 3279 0900
 F (07) 3279 0955

 ABN 51 009 878 899
 www.morrisongeo.com.au

Brisbane Office Job Number: DL18/196 Ref No: 13946 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 310 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 310 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

A summary of tests representative of the fill constructed on Lot 310 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %		
310	274	26 th July 2018	100.0		
310	275	26 th July 2018	99.0		
Note: Laboratory Standard Test Methods Used: AS1310.5.8.1, 5.7.1, 2.1.1.					
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.					

Table 1: Summary of Testing

Fill constructed on Lot 310 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 310 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 75 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 75 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1	
Sample Number :	250187	250188	250190	250191	
Test Number :	230107	230100	230150	275	
Sampling Method :	-	-	-	-	
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	-	290	289	-	
Sample Location :	N: 6946699	Lot 290	Lot 289	N: 6946681	
	E: 465892	N: 6946692	N: 6946692	E: 465853	
	RL: 42.802	E: 465874	E: 465856	RL: 42.818	
		RL: 42.921	RL: 42.792		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	28.7	23.6	29.3	27.8	
Hilf MDR Number :	250187	250188	250190	250191	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	106.5	119	100	103.5	
Field Wet Density (t/m ³) :	1.826	1.863	1.875	1.897	
Optimum Moisture Content (%) :	27.0	19.9	29.3	26.9	
Moisture Variation :	-1.7	-3.9	0.0	-0.9	
Peak Converted Wet Density (t/m ³) :	1.855	1.900	1.874	1.915	
Hilf Density Ratio (%) :	98.5	98.0	100.0	99.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sign A

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

Brisbane Office Job Number: DL18/196 Ref No: 13947 Author: L. McDowall

24th October 2018

CCA Winslow Pty Ltd 1587 Ipswich Road Rocklea, QLD 4106

ATTENTION: MR GLEN RITCHIE MR KIERAN HOY Email: <u>glenr@ccawinslow.com.au</u> kieranh@ccawinslow.com.au

Dear Sir,

RE: LOT 311 LEVEL ONE COMPLIANCE REPORT FOR BULK EARTHWORKS FILLING OPERATIONS WATERLEA ESTATE, STAGE 3, WALLOON

Earthworks filling operations were carried out on Lot 311 at the above Development to form a working platform to support a future residential building.

Earthworks were constructed by CCA Winslow (The Client) between 05th July 2017 and 18th September 2018.

This report should be read in conjunction with Morrison Geotechnic Report "13791 – DL18/196 – CCA Winslow – Waterlea Estate, Stage 3 – Level One Report" Dated 12th October 2018.

The Brief from the Client was limited to:

- Level One Inspection of the placement and compaction of fill materials in accordance with AS3798 2007 – "Guidelines on Earthworks for Commercial and Residential Developments";
- Relative Density Control Testing in accordance with AS1289 Testing of Soils for Engineering Purposes and at frequencies required in AS3798 Table 8.
- Ipswich City Council Specifications.
- ETS Engineering Stage 3A and 3B Bulk Earthworks Layout Plans, Job Code: 17BNE-0083, Sheet Numbers: C200 – C203, Revision G, dated, 30th August 2018, and Interim Solution for Fish Barrier 17BNR-0083 – SK31 Rev P4

Level One Inspections and Testing was carried out on the stripped ground surface and during the placement and compaction of fill materials. Field and laboratory testing included proof roll testing of the stripped surface, field density testing using the nuclear soil moisture density gauge and standard Compactions.

A summary of tests representative of the fill constructed on Lot 311 are presented in Table 1 below.

Lot Number	Test Number	Date Tested	Density Ratio Achieved %			
311	273	26 th July 2018	98.0			
Note: Laboratory Standard Test Methods Used: AS1311.5.8.1, 5.7.1, 2.1.1.						
<i>Note:</i> Lot numbers on test certificates not accurate due to lot layout redesign after completion of Bulk Earthworks.						

Table 1: Summary of Testing

Fill constructed on Lot 311 has been observed to be placed and compacted in accordance with the Brief. The fill on Lot 311 can be termed as "Controlled Fill" in accordance with AS 2870-2011 "Residential Slabs and Footings".

This statement does not include any top soil, which may have been placed for use as Lot dressing or any other subsequent earthworks after 18th September 2018

If there are any queries concerning the above please do not hesitate to contact this office, or alternatively send to my email at: <u>Imcdowall@morrisongeo.com.au</u>

Yours faithfully,

L. McDOWALL For and on behalf of MORRISON GEOTECHNIC PTY LIMITED

Encl: Laboratory Test Reports DL18/196 – 75 Brochure: Important Information About Your Geotechnical Engineering Report

Brisbane | Gold Coast | Maroochydore

Unit 1, 35 Limestone Street (PO Box 3063), Darra Q 4076 P (07) 3279 0900 F (07) 3279 0955 ABN: 51 009 878 899

www.morrisongeo.com.au
fillino fillio f

Hilf Density Ratio Report					
Client : Address : Project Name : Project Number : Location:	CCA WINSLOW 1587 IPSWICH ROAD, ROCKLEA, QLD, 4106 EARTHWORKS SUPERVISION DL18/196 WATERLEA ESTATE, STAGE 3 , WALLOON		Report Number: Report Date : Order Number : Test Method : Page	DL18/196 - 75 14/08/2018 PO40420 AS1289.5.8.1 & 5.7.1 2 1 of 1	
Sample Number :	250187	250188	250190	250191	
Test Number :	230107	230100	230150	275	
Sampling Method :	-	-	-	-	
Date Sampled :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Date Tested :	26/07/2018	26/07/2018	26/07/2018	26/07/2018	
Material Type :	Bulk Fill	Bulk Fill	Bulk Fill	Bulk Fill	
Material Source :	On Site (Cut)	On Site (Cut)	On Site (Cut)	On Site (Cut)	
Lot Number :	-	290	289	-	
Sample Location :	N: 6946699	Lot 290	Lot 289	N: 6946681	
	E: 465892	N: 6946692	N: 6946692	E: 465853	
	RL: 42.802	E: 465874	E: 465856	RL: 42.818	
		RL: 42.921	RL: 42.792		
Test Depth (mm) :	150	150	150	150	
Layer Depth (mm) :	-	-	-	-	
Maximum Size (mm) :	19	19	19	19	
Oversize Wet (%) :	-	-	-	-	
Oversize Dry (%) :	-	-	-	-	
Oversize Density (t/m ³) :	-	-	-	-	
Field Moisture Content (%) :	28.7	23.6	29.3	27.8	
Hilf MDR Number :	250187	250188	250190	250191	
Hilf MDR Method :	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	AS1289.5.1.1 & 5.7.1	
Compactive Effort :	Standard	Standard	Standard	Standard	
Field Density Method :	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	AS1289.5.8.1 & 5.7.1	
Moisture Method :	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	AS1289.2.1.1	
Moisture Ratio (%) :	106.5	119	100	103.5	
Field Wet Density (t/m ³) :	1.826	1.863	1.875	1.897	
Optimum Moisture Content (%) :	27.0	19.9	29.3	26.9	
Moisture Variation :	-1.7	-3.9	0.0	-0.9	
Peak Converted Wet Density (t/m ³) :	1.855	1.900	1.874	1.915	
Hilf Density Ratio (%) :	98.5	98.0	100.0	99.0	
Minimum Specification :	95	95	95	95	
Moisture Specification :	+ or - 2%	+ or - 2%	+ or - 2%	+ or - 2%	
Site Selection :	-	-	-	-	
Soil Description :	CLAY (CH)	CLAY (CH)	CLAY (CH)	CLAY (CH)	
Remarks :	-				

Accredited for compliance with ISO/IEC 17025.

Liam Mcdowall (Brisbane) - Branch Manager NATA Accreditation Number

1162 / 1169

APPROVED SIGNATORY Sign A

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- · not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant: none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.